Downregulation of vitamin C transporter SVCT-2 in doxorubicin-induced cardiomyocyte injury.

نویسندگان

  • Ana R Ludke
  • Anita K Sharma
  • Gauri Akolkar
  • Gunjan Bajpai
  • Pawan K Singal
چکیده

Vitamin C (Vit C) has been shown to be protective against doxorubicin (Dox)-induced cardiotoxicity. However, Vit C uptake into cardiomyocytes is poorly understood. Furthermore, whether the antioxidant enzyme reserve is enhanced by Vit C is also not known. The present study investigated an influence of Dox on Vit C transporters, expression of endogenous antioxidant reserve as well as enzymes, oxidative stress, and apoptosis in isolated cardiomyocytes. Cardiomyocytes isolated from adult Sprague-Dawley rats were exposed to control (culture medium 199 alone), Dox (10 μM), Vit C (25 μM), and Vit C + Dox for 24 h. Vit C transporter expression and localization, oxidative stress, antioxidant enzymes, and apoptosis were studied. Expression and localization of sodium-dependent vitamin C transporter-2 (SVCT-2) in the sarcolemma was reduced by Dox, but Vit C supplementation was able to blunt this change. There was a decrease in the expression of antioxidant enzymes glutathione peroxidase (GPx), catalase, and Cu/Zn superoxide dismutase (SOD) due to Dox, but only GPx expression was completely prevented and Cu/Zn SOD was partially rescued by Vit C. Dox-induced decrease in antioxidant reserve and increase in oxidative stress were partially mitigated by Vit C. Dox-induced apoptosis was ameliorated by Vit C. It is suggested that cardioprotection offered by Vit C in Dox-induced cardiomyopathy may involve an upregulation of SVCT-2 transporter followed by a reduction in oxidative stress as well as blunting of cardiomyocyte injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FGF-2 protects cardiomyocytes from doxorubicin damage via protein kinase C-dependent effects on efflux transporters.

AIMS The anti-cancer anthracycline doxorubicin (DOX) increases the risk of cardiac damage, indicating a need to protect the heart and still allow the benefits of drug treatment. Fibroblast growth factor-2 (FGF-2) is cardioprotective against ischaemia-reperfusion injury. Our aim is to investigate: (i) the ability of FGF-2 to protect against DOX-induced cardiomyocyte damage and (ii) the contribut...

متن کامل

Sodium-Glucose Co-Transporter 2 Inhibitors could Improve the Bioavailability of Vitamin C at the Kidney in Diabetes Treatment

It is known that plasma (serum) vitamin C level is lowered in diabetic patients by some mechanisms including renal loss [1]. Vitamin C and glucose filtered from the glomerulus are presumed to be reabsorbed at the renal proximal tubule by sodium-vitamin C co-transporter (SVCT) 1 and sodium-glucose co-transporter (SGLT) 2, respectively [2-4]. In the enterocyte that expresses SVCT 1 and SGLT 1, it...

متن کامل

Protective effects of omega-3, atorvastatin, vitamin E and vitamin C against doxorubicin-induced cardiotoxicity in rats: a comparison study

Introduction: The stress-oxidative is involved in doxorubicin (DOX)-induced cardiotoxicity. Due to the potential and previous reported for antioxidant properties of atorvastatin, omega-3, vitamin E and vitamin C, their efficacy to prevention of DOX-induced cardiotoxicity was investigated in this study. Methods: Fifty-six male rats were divided into 8 groups which received omega-3, atorvastati...

متن کامل

L-Ascorbic acid can abrogate SVCT-2-dependent cetuximab resistance mediated by mutant KRAS in human colon cancer cells.

Colon cancer patients with mutant KRAS are resistant to cetuximab, an antibody directed against the epidermal growth factor receptor, which is an effective clinical therapy for patients with wild-type KRAS. Numerous combinatorial therapies have been tested to overcome the resistance to cetuximab. However, no combinations have been found that can be used as effective therapeutic strategies. In t...

متن کامل

Glutamate receptors modulate sodium-dependent and calcium-independent vitamin C bidirectional transport in cultured avian retinal cells.

Vitamin C is transported in the brain by sodium vitamin C co-transporter 2 (SVCT-2) for ascorbate and glucose transporters for dehydroascorbate. Here we have studied the expression of SVCT-2 and the uptake and release of [(14)C] ascorbate in chick retinal cells. SVCT-2 immunoreactivity was detected in rat and chick retina, specially in amacrine cells and in cells in the ganglion cell layer. Acc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 303 6  شماره 

صفحات  -

تاریخ انتشار 2012